
DOI: 10.1007/s10910-006-9125-6
Journal of Mathematical Chemistry, Vol. 40, No. 1, July 2006 (© 2006)

Analyzing scalability of Neville elimination

P. Alonso∗
Department of Mathematics, University of Oviedo, Campus de Viesques, E-33203 Gijón, Spain

E-mail: hpc@aic.uniovi.es

R. Cortina, I. Dı́az and J. Ranilla
Artificial Intelligence Center, University of Oviedo, Campus de Viesques, E-33203 Gijón, Spain

The scalability of a parallel system is a measure of its capacity to effectively use
an increasing number of processors. Several performance evaluation metrics have been
developed to study the scalability of parallel algorithms and architectures. The isoeffi-
ciency function is one of those metrics. It relates the size of the problem being solved
to the number of processors required to maintain efficiency at a fixed value. This work
studies the scalability of Neville elimination, which is a method to solve a linear equa-
tion system. This process appears naturally when the Neville strategy of interpolation is
used to solve linear systems. The scalability behavior of some algorithms of this method
is studied on an IBM SP2 and also over a network of personal computers using the iso-
efficiency function and the scaled efficiency.

KEY WORDS: Neville elimination, scalability, isoefficiency function, performance

Mathematics Subject Classification (2000): MSC 65F05, MSC 65Y20, MSC 68W10

1. Introduction

It is accepted that the fastest algorithm for solving a given problem is the
best one in sequential computing. However, parallel computing introduces addi-
tional sources of complexity: if we are interested in building “good” programs
we also need to manage the execution of thousands of processes and to coordi-
nate millions of interprocess interactions.

As early as 1967, Amdahl [4] made the observation that if the sequential
component of an algorithm accounts for s percent of program execution time,
then the maximum possible speedup that can be achieved on a parallel computer
is 1/s. This statement, now popularly known as Amdahl’s Law, has been used by
Amdahl and others to argue against the usefulness of large scale parallel com-
puters.

However, the time taken by a parallel algorithm depends on many and
more complex multifaceted issues than the serial fraction s, like, for example, the

∗Corresponding author.

49

0259-9791/06/0700-0049/0 © 2006 Springer Science+Business Media, Inc.

50 P. Alonso et al. / Analyzing scalability of Neville elimination

degree of locality, the communication model, the degree of concurrency, latency,
throughput, the temporal relationship between the concurrent events or potential
for reuse. The relative importance of these diverse metrics will vary according to
the nature of the problem at hand.

Thus, the time taken by a parallel algorithm to solve a problem instance
provides only limited information. In fact, an algorithm that yields good per-
formance for a selected problem on a fixed number of processors on a given
machine may perform poorly if any of these parameters are changed. More-
over, the best solution may differ from that suggested by existing sequential algo-
rithms.

Hence, the evaluation of a parallel algorithm on a parallel computer
requires a more comprehensive analysis. A good performance model, like a good
scientific theory, is able to explain available observations and predict future
circumstances, while disregarding unimportant details. We can use metrics like
speedup or efficiency to explore and refine a parallel algorithm design, and thus,
perform qualitative analyses of performance without further refinement. We can
also perform a quantitative analysis, which is obtained by substituting machine
specific numeric values for the various parameters in performance models.

However, large parallel computers are frequently used not only to solve
fixed-size problems faster, but also to solve larger problems. This observation
encourages a different approach to algorithm analysis, whereby we do not con-
sider how efficiency varies with the number of processors (p), but rather how the
amount of computation performed must scale with p to keep the efficiency con-
stant. This approach is based on a measurement called scalability.

A set of metrics has been developed to study the scalability of parallel algo-
rithms and architectures. Kumar and Gupta [16] provide a comprehensive sur-
vey of different methods of scalability analysis. The isoefficiency function is one
such metric. It relates the size of the problem being solved to the number of
processors required to maintain efficiency at a fixed value. This function allows
the degree of scalability of a parallel system to be determined with respect to
the number of processors, their speed, and the communication bandwidth of the
interconnection network (see [12,13]).

This paper models and measures just one aspect of Neville elimination per-
formance: parallel scalability. We focus on this issue because it frequently figures
among the more problematic aspects of parallel program design, yet it is easily
formalized in mathematical models.

Neville elimination is a method to solve a linear equation system, which
appears naturally when the Neville strategy of interpolation is used for resolving
linear systems. This elimination works by making zeros in a matrix column by
adding to each row an adequate multiple of the previous one. This process is an
alternative to Gaussian elimination and proved to be better than the latter when
working with totally positive matrices, sign-regular matrices or other related
types of matrices (see [8,11]). For example, the computational cost is smaller for

P. Alonso et al. / Analyzing scalability of Neville elimination 51

Neville elimination than for Gaussian elimination when working with the inverse
matrix of a band matrix (see Theorem 2.7 of [10]).

Solution of the matrix equation and calculation of the matrix inverse of a
square matrix are recurrent tasks handled by molecular modeling software (see
[5]). The calculation of the inverse of positive matrices is a common task in
Computational Chemistry. Thus, in Quantum Chemistry, inversion of the overlap
matrix between basis functions is required to obtain the electronic energy and to
perform charge density analyses. Similarly, inversion of the hessian matrix, which
stores the second derivatives of molecular energy with respect to nuclear coor-
dinates, is frequently demanded by optimization techniques and normal mode
analyses. Hence, the availability of more efficient direct methods for solving
matrix equations could be of particular interest.

This work is organized as follows: section 2 introduces a number of metrics
commonly used to evaluate the performance of parallel systems. Section 3 briefly
describes Neville elimination. Section 4 focuses on the analysis of the isoefficien-
cy function applied to the Neville method when different data distributions are
considered. In this section, the result of this analysis is compared to the same
known analysis performed with Gaussian method. Finally, section 5 shows how
the hardware related parameters and the number of processors affect the isoeffi-
ciency function.

2. Performance metrics for parallel systems

Certain metrics that are commonly used to measure the performance of
parallel systems are introduced in this section (see [12,16]). For a more detailed
study of these parameters, see [13].

This work focuses on the study of the scalability of a parallel system. A
parallel system is said to be scalable if its efficiency can be kept fixed as the num-
ber of processors is increased, provided that the problem size is also increased.

For different parallel systems, problem size must increase at different rates
in order to maintain a fixed efficiency as the number of processors is increased.
This rate determines the degree of scalability of the parallel system.

The problem size (W) is defined as the number of basic operations needed
to solve the problem by the fastest known sequential algorithm on a single pro-
cessor, while the overhead function of a parallel system is defined as the part of
its cost that is not incurred by the fastest known serial algorithm on a sequential
computer (T0 = pTp − W). Therefore,

W = K T0(W, p), (1)

where K is a constant depending on efficiency. This function dictates the growth
rate of W required to keep efficiency fixed as p increases. This is called the iso-
efficiency function of the parallel system.

52 P. Alonso et al. / Analyzing scalability of Neville elimination

The isoefficiency function determines the ease with which a parallel system
can maintain a constant efficiency, which is achieved if the ratio T0/W remains
fixed.

If T0 has multiple terms, we balance W against each term of T0 and com-
pute the respective isoefficiency functions for individual terms.

3. The Neville method

A system of equations Ax = b is usually solved in two stages (A = LU).
First, through a series of algebraic manipulations, the original system of equa-
tions is reduced to an upper-triangular system U x = y. In the second stage, the
upper-triangular system is solved by a procedure known as back-substitution.

If A is a square matrix of order n, the Neville elimination procedure con-
sists of n − 1 successive major steps (see [10] for a detailed and formal introduc-
tion), resulting in a sequence of matrices as follows

A = A(1) → A(2) → · · · → A(n) = U, (2)

where U is an upper-triangular matrix. If A is non-singular the matrix A(k) =
(a(k)

i j)1 ≤ i, j ≤ n has zeros below its main diagonal in the k − 1 first columns,
and the following relationship is also satisfied:

a(k)
ik = 0, i ≥ k ⇒ a(k)

hk = 0, ∀h ≥ i. (3)

To get A(k+1) from A(k) we produce zeros in the kth column below the main
diagonal, subtracting a multiple of the ith row from the (i + 1)th for i = n −
1, n − 2, . . . , k, according to the formula:

a(k+1)
i j =

a(k)
i j , if 1 ≤ i ≤ k,

a(k)
i j − a(k)

ik

a(k)
i−1,k

a(k)

i−1, j if k + 1 ≤ i ≤ n and a(k)

i−1,k �= 0,

a(k)
i j , if k + 1 ≤ i ≤ n and a(k)

i−1,k = 0.

(4)

In the same way, the vector of independent terms is modified stage by stage.
In the algorithms we are next going to study, we will focus on the coefficient
matrix of a system of equations.

Let Ax = b be a non-singular system of linear equations. Starting from the
last expressions, we obtain the following algorithm:

Algorithm 1. Serial Neville elimination

For j = 1 to n − 1 do
Compute the (n − j) multipliers

P. Alonso et al. / Analyzing scalability of Neville elimination 53

Update the active part of the matrix
End j

Let us consider the case in which Neville elimination can be performed
without changing rows, which happens, for example, when A is a non-singular
totally positive matrix. The work presented in [8] shows that row changes are
not necessary in A when the Neville elimination process is applied to a totally
positive matrix. This is particularly useful in maintaining band structure when
working with this kind of matrix. For example, when an interpolation problem
is solved by using B-splines, their collocation matrices are totally positive band
matrices.

The same work also proves that the multipliers obtained after transforming
A to U are the same as those obtained from converting L to I in Neville as well
as Gaussian elimination.

However, in the case of Neville elimination, those multipliers are opposite
to those obtained from getting L−1 to I ; this is not true for Gaussian elimina-
tion.

A lot of computations become unnecessary if L−1 is a band matrix in Nev-
ille elimination as well as Gaussian elimination. However, L is usually a dense
lower-triangular matrix and so it is not possible to save computations when
Gaussian elimination is performed on L or on A. On the other hand, the cost
of Neville elimination for L or A is the same as for L−1. In general, the number
of non-zero multipliers of Neville elimination for A is the minimum of the num-
ber of non-zero multipliers needed for Gaussian elimination applied to L and
L−1.

Regarding the use of pivoting strategies, Gasca [9] proves that in exact
arithmetic the Neville elimination does not need row exchange when scaled par-
tial pivoting is used and A is a non-singular totally positive matrix. The same
result holds, for sufficiently high-precision arithmetic, for a class of totally pos-
itive matrices, which nevertheless includes the most interesting of them, i.e., B-
spline collocation matrices, Hurwitz matrices, etc.

On the other hand, it is known that with finite arithmetic, Gauss elimina-
tion without pivoting produces a small component-wise relative backward error
when totally positive matrices are used (see [14]). In [1], it is proved that the
backward error bounds obtained by Neville elimination are quite similar to those
obtained by other authors for Gauss elimination.

Let us consider an elimination process without row changes. Neville elimi-
nation involves approximately n2/2 divisions and n3/3 subtractions and multipli-
cations. If the cost associated to the back-substitution is rejected, the sequential
run time of the procedure is:

Ts = 4n3 − 3n2 − n

6
tc ≈ 2n3

3
tc, (5)

54 P. Alonso et al. / Analyzing scalability of Neville elimination

where tc is the time spend carrying out float point operation. This cost coincides
with the cost of sequential Gaussian elimination.

4. The isoefficiency function of Neville elimination

This section studies the isoefficiency function for parallel Neville elimina-
tion for different data distributions of the matrix A. To do this, a MIMD Dis-
tributed-Memory machine with p processors will be considered.

Let us consider the block-cyclic-striped mapping, where the matrix is
divided into blocks of m consecutive rows (columns). These blocks are distrib-
uted among the processors cyclically, so each processor has assigned h blocks,
where h = n/mp and h ∈ [1, n/p]. This algorithm is known as row-wise block-
striped partitioning (column-wise block-striped partitioning) if h = 1 and row-
wise cyclic-striped partitioning (column-wise cyclic-striped partitioning) if h =
n/p.

4.1. Row-wise striping

If a row-wise block-cyclic striping data distribution among processors is
considered, the Neville method can be described by the following algorithm:

Algorithm 2. Row-wise block-cyclic striping in Neville elimination

For j = 1 to n–1 do
For each processor l (being l an active processor) do
Send the last row of each block to the next processor (l + 1)
Compute the multipliers
Update the active part of the matrix
End j

Due to communications being between neighboring processors (directly
connected), the cost of sending a message of size n is

ts + n tw, (6)

where ts denotes the startup time and tw is the transmission time of a floating-
point number.

Let us now analyze the cases h = 1 and h = n/p.
Case 1. If h = 1 (row-wise block-striped), the results obtained in [2] guar-

antee that the overall parallel run time is:

T row/block
p ≈ n3

p
tc + n ts + n2

2
tw. (7)

P. Alonso et al. / Analyzing scalability of Neville elimination 55

According to the definition of the size of the problem given in section 2, we can
state that W is Θ(n3) if Neville elimination is used to solve a linear equation sys-
tem of order n.

The relation T0 = pTp −W gives the following expression for the total over-
head function:

T row/block
0 ≈ 1

3
n3tc + np ts + 1

2
n2 p tw. (8)

Thus, the communication overhead is as follows:

np ts + 1
2

n2 p tw. (9)

As the approximation of communication overhead has multiple terms, W is bal-
anced against each individual term of (9) to compute the respective isoefficiency
function.

As for the term ts, the following expression must be satisfied:

W = np = W 1/3 p ⇒ W 2/3 = p ⇒ W = p3/2 (10)

Similarly, to determine the isoefficiency term due to tw, n3 has to be pro-
portional to n2 ptw. Therefore,

W = n2 p = W 2/3 p ⇒ W 1/3 = p ⇒ W = p3. (11)

On the other hand, if the communication costs are ignored in (8), the cost
of this algorithm is n3. Thus, the cost of the parallel algorithm is higher than the
sequential run time (5) by a factor of 3/2. This inefficiency with row-wise block-
striped partitioning is due to processor idling resulting from an uneven load dis-
tribution.

As a result of the estimations carried out above, we can conclude that the
overall asymptotic isoefficiency function of this parallel system is max{p3/2, p3},
which is Θ(p3).

Case 2. If h = n/p (row-wise cyclic-striped), by applying the same argument
as in the previous case, we obtain:

T row/cyclic
p ≈ 2n3

3p
tc + n ts +

(
n3

3p
+ n2

4

)

tw. (12)

In this case, the processors have the same work load due to the cyclic-
striped mapping and, therefore, the following expression for the overhead func-
tion is obtained:

T row/cyclic
0 ≈ np ts +

(
n3

3
+ n2 p

4

)

tw. (13)

56 P. Alonso et al. / Analyzing scalability of Neville elimination

As in case 1, the isoefficiency term with respect to message startup time is
Θ(p3/2).

Since W is n3, the term n3tw will always be balanced with respect to W .
This term is independent of p and does not contribute to the isoefficiency func-
tion. The other term of tw, n2 p, yields the following isoefficiency function for the
algorithm:

W = n2 p = W 2/3 p ⇒ W 1/3 = p ⇒ W = p3. (14)

Thus, the final isoefficiency function is Θ(p3).

4.2. Column-wise striping

As it can be seen in [3], the algorithm of a column-wise block-cyclic strip-
ing in Neville elimination is the following:

Algorithm 3. Column-wise block-cyclic striping in Neville elimination

For j = 1 to n − 1 do
q = ((j − 1) DIV m) MOD p + 1
In processor q do
Compute the (n − j) multipliers
Send the multipliers to the rest of the active processor
For each processor l (l being an active processor) do
Update the active part of the matrix
End j

As regards communication time, a one-to-all broadcast is required to send
the multipliers from a processor to the rest of the active processors. The cost of
this operation in our platforms (IBM SP2 and PC Cluster using MPI) is:

(ts + n tw) log(p), (15)

where n is the size of the message and the logarithm is in base two (see [7,17]).
Case 1: If h = 1 (column-wise block-striped), the total parallel run time is:

T column/block
p ≈ n3

p
tc + n log(p) ts + n2 log(p)

2
tw. (16)

Observe the existence of the uneven load distribution as in row-wise block-
striped.

As it has already been noted, the size of the problem is W ∈ Θ(n3), which
is independent of the algorithm used. Furthermore, the communication overhead
is:

np log(p) ts + n2 p log(p)

2
tw. (17)

P. Alonso et al. / Analyzing scalability of Neville elimination 57

Table 1
Isoefficiency function.

Method Row/block Row/cyclic Column/block Column/cyclic

Gauss Θ(p3 log3(p)) Θ(p3 log3(p)) Θ(p3 log3(p)) Θ(p3 log3(p))

Neville Θ(p3) Θ(p3) Θ(p3 log3(p)) Θ(p3 log3(p))

To directly calculate its isoefficiency function we can obtain the term that dom-
inates in T0, that is,

np log(p) ts + 1
2

n2 p log(p)tw = np log(p)

(

ts + 1
2

n tw

)

≈ n2 p log(p), (18)

thereby,

W = n2 p log(p) = W 2/3 p log(p) ⇒ W = (p log(p))3. (19)

Hence, the isoefficiency function is Θ(p3 log3(p)).
Case 2: If h = n/p (column-wise cyclic-striped)

T column/cyclic
p ≈ 2n3

3p
tc + n log(p) ts + n2 log(p)

2
tw. (20)

The associated overhead function in this case is:

T column/cyclic
0 ≈ np log(p) ts + n2 p log(p)

2
tw. (21)

The isoefficiency term due to ts is Θ(p3/2 log3/2(p)) and the relative one to tw is
Θ(p3 log3(p)). Therefore, overall asymptotic isoefficiency of this parallel system
is max{p3/2 log3/2(p), p3 log3(p)}, which is Θ(p3 log3(p)).

4.3. Neville versus Gauss

In this section, the isoefficiency functions computed in the previous one are
compared with those obtained from the Gaussian method under the same con-
ditions.

The differences between Neville and Gauss depend on the communica-
tions. In a row-wise striping distribution, whilst Neville realizes communications
between neighboring processors, Gauss carries out one-to-all broadcasts. In case
of columns, the communications are the same.

As shown by table 1, the isoefficiency function for the Neville method
is lower than the Gaussian one when a row-wise striping is performed. This
function has the same value when the partitioning is column-wise.

58 P. Alonso et al. / Analyzing scalability of Neville elimination

For example, the total run time of Gauss elimination when the matrix is
partitioned among the processors by using cyclic-striped mapping is:

T row/cyclic
p ≈ 2n3

3p
tc + n log(p) ts + 1

2
n2 log(p) tw. (22)

The isoefficiency functions due to ts and tw are (p log(p))3/2 and (p log(p))3,
respectively. Hence, the overall isoefficiency function due to the communication
overhead is Θ(p3 log3(p)).

5. Numerical results

The previous sections studied the scalability of the Neville method using
different partitioning strategies from a theoretical point of view. Thus, sec-
tion 4 shows that the theoretical isoefficiency function ranges from Θ(p3) and
Θ(p3 log3(p)), according to the kind of partitioning applied. In addition, it is
shown how the isoefficiency expression is qualified by the constants tc, ts, and
tw which depend on the computer used.

This section will now analyze the influence of the values of these constants.
Obviously, the order of the function will not change, but the real (empirical)
needs of the problem size growth depend on these values. To analyze the influ-
ence of tc, ts and tw constants, they have been estimated in our platforms: IBM
SP2 (thin2 processors at 1.6 MHz and TrailBlazer3 switch) and PC Cluster (Intel
Pentium III at 733 MHz and Fast Ethernet). An adequate distribution of Mes-
sage Passing Interface (MPI) is used when necessary.

Equation (23) shows the estimations obtained for the IBM SP2

tc = 1.6 × 10 − 8 s, ts = 3.1 × 10 − 5 s, tw = 1.2 × 10 − 7 s (23)

and equation (24), those for the PC Cluster

tc = 3.8 × 10 − 8 s, ts = 8.8 × 10 − 5 s, tw = 1.3 × 10 − 6 s. (24)

All these values were obtained using a least square approximation. Similar
studies can be seen in [6] and [15].

As we have seen in section 4, the isoefficiency function for the case of row-
wise block-striped is Θ(p3). This means that increasing the number of processors
by a factor of p̄/p requires W to be increased by a factor of p̄3/p3. Using the
estimations of (23), let us suppose we are solving a system of size 9603 using four
processors. At this point, the efficiency is equal to 0.65. We want to analyze the
scalability when the machine size increases to eight processors. To keep efficiency
constant (at 0.65 value), the system size needs to grow to 19203.

P. Alonso et al. / Analyzing scalability of Neville elimination 59

0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 256 128 64 32 1684

n

p

Row/Block IBM
Row/Block PCs

Column/Block IBM
Column/Block PCs

Figure 1. IBM SP2 and PC Cluster isoefficiency curves for E = 0.65.

In the case of column-wise block-striped, with the same parameters, the effi-
ciency of the system is 0.64. The isoefficiency function given by (19), determines
that if the number of processors increases to 8, the system size must increase to
28803.

In figure 1, theoretical isoefficiency curves Θ(p3) and Θ(p3 log3(p)) are
plotted for the IBM SP2 and the PC Cluster when the efficiency is 0.65. These
curves show that the isoefficiency function is sensitive to changes in the con-
stants. For example, the IBM SP2 reaches efficiency 0.65 with a problem size
of 9603, four processors and row/block distribution, while in the PC Cluster this
efficiency is obtained for a system size of 30003 and the same number of proces-
sors. The isoefficiency function is much more sensitive to changes in tw. Thus,
a hypothetical machine with tc and ts from IBM SP2 and tw from PC Cluster
reaches an efficiency of 0.65, with a problem size of 70003, four processors and
row/block distribution. If we change the value of ts in the IBM SP2 to that from
the PC Cluster, the size of the problem must be 13003. On the other hand, if the
replaced constant is ts the size of the problem must be 5003.

Let us now consider scaled efficiency [18] to compare all the distributions
analyzed in this paper. Table 2 shows the efficiency evolution of the IBM SP2 if
the problem size and processors are doubled. As expected, efficiency worsens for
increasing p, but we can say that for row distributions it decreases more slowly
than for column distributions.

The scaled efficiency data shown in Figure 2 has been computed for the
IBM SP2, the PC Cluster and block and cyclic distributions (rows and columns).
Again, we can observe the difference between both environments for the same
distribution.

60 P. Alonso et al. / Analyzing scalability of Neville elimination

Table 2
Scaled efficiency.

P n3 Row/block Row/cyclic Column/block Column/cyclic

4 9603 0.65 0.21 0.64 0.93
8 12103 0.64 0.21 0.60 0.86
16 15243 0.63 0.21 0.55 0.76
32 19203 0.62 0.21 0.48 0.63
64 24193 0.60 0.20 0.39 0.48
128 30483 0.56 0.20 0.29 0.34
256 38403 0.52 0.20 0.20 0.23

0

 0.2

 0.4

 0.6

 0.8

1

 256 128 64 32 1684

E

p

Row/Block IBM
Row/Cyclic IBM

Column/Block IBM
Column/Cyclic IBM

Row/Block PCs
Row/Cyclic PCs

Column/Block PCs
Column/Cyclic PCs

0

 0.2

 0.4

 0.6

 0.8

1

256128 64 32 1684

E

p

a b

Figure 2. IBM SP2 and PC Cluster scaled efficiency.

Acknowledgments

The research reported in this paper has been supported in part under MEC
and FEDER grant TIN2004-05920.

References

[1] P. Alonso, M. Gasca and J.M. Peña, Backward error analysis of Neville elimination, Appl.
Numer. Math. 23 (1997) 193–204.

[2] P. Alonso, R. Cortina, V. Hernández and J. Ranilla, A study the performance of Neville
elimination using two kinds of partitioning techniques, Linear Algebra Appl. 332–334 (2001)
111–117.

[3] P. Alonso, R. Cortina, I. Dı́az, V. Hernández and J. Ranilla, A columnwise block striping in
Neville elimination, Lect. Notes in Comput. Sci. 2328 (2002) 379–386.

[4] G.M. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities. In: Proc. AFIPS Conference, (AFIPS Press, Reston, VA, 1967), pp. 483–485.

[5] C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd Edn. (Wiley,
England, 2004) p. 596.

P. Alonso et al. / Analyzing scalability of Neville elimination 61

[6] J.J. Dongarra, Performance of Various Computers Using Standard Linear Equations Software
(Linpack Benchmark Report), University of Tennessee Computer Science Technical Report,
CS-89–85 (2001).

[7] A. Farazdel, G.R. Archondo-Callao, E. Hocks, T. Sakachi and F. Vagnini, Understanding
and Using the SP Switch, IBM International Technical Support Organization, SG24-5161-00
(1999).

[8] M. Gasca and J.M. Peña, Total positivity and Neville elimination, Linear Algebra Appl. 165
(1992) 25–44.

[9] M. Gasca and J.M. Peña, Scaled pivoting in Gauss and Neville elimination for totally positive
systems, Appl. Numer. Math. 13 (1993) 345–356.

[10] M. Gasca and J.M. Peña, A matricial description of Neville elimination with applications to
total positivity, Linear Algebra Appl. 202 (1994) 33–45.

[11] M. Gasca and C.A. Michelli, Total Positivity and its Applications (Kluwer Academic Publish-
ers, Netherlands, 1996) p. 518.

[12] A. Grama, A. Gupta and V. Kumar, Isoefficiency Function: A Scalability Metric for Parallel
Algorithms and Architectures, IEEE Parallel Distrib. Technol. Special Issue Parallel Distrib.
Syst. Theory Practice, 1–3 (1993) 12–21.

[13] A. Grama, G. Karypis, V. Kumar and A. Gupta, Introduction to Parallel Computing, 2nd Ed.
(Addison-Wesly, Boston, 2003) p. 656.

[14] N.J. Higham, Bounding the error in Gaussian elimination for tridiagonal systems, SIAM J.
Matrix Anal. Appl. 11(4) (1990) 521–530.

[15] R. Hockney and M. Berry, Public International Benchmarks for Parallel Computers, PARK-
BENCH Committee: Report (1996) (http://www.netlib.org//parkbench).

[16] V. Kumar and A. Gupta, Analyzing scalability of parallel algorithms and architectures, J. Par-
allel Distr. Com. 22(3) (1994) 379–391.

[17] G.R. Luecke, M. Kraeva, J. Yuan and S. Spanoyannis, Performance and scalability of MPI on
PC clusters, Concurr. Comput. Practice Experience 16 (2004) 79–107.

[18] M. Prieto, R.S. Montero, I.M. Llorente and F. Tirado, A parallel multigrid solver for viscous
flows on anisotropic structured grids, Parallel Computing 29 (2003) 907–923.

